Modeling and Vector Control of Planar Magnetic Levitator
نویسندگان
چکیده
We designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, we discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. We describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel–Park transformation is derived for commutation of the stator phase currents. We provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.
منابع مشابه
2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines
A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using...
متن کاملMagnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems
In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...
متن کاملAnalytical Modeling of Magnetic Field Distribution in Inner Rotor Brushless Magnet Segmented Surface Inset Permanent Magnet Machines
Brushless permanent magnet surface inset machines are interested in industrial applications due to their high efficiency and power density. Magnet segmentation is a common technique in order to mitigate cogging torque and electromagnetic torque components in these machines. An accurate computation of magnetic vector potential is necessary in order to compute cogging torque, electromagnetic torq...
متن کاملSynthesis, characterization, antibacterial activity and molecular modeling studies of Ni(II) and Zn(II) complexes with phenylpyridylformamidine ligand
The Ni(II) and Zn(II) complexes with phenylpyridylformamidine (PhPyF) ligand, [Ni(PhPyF)Cl2] and [Zn(PhPyF)Cl2], have been prepared and investigated using different chemical techniques such as elemental analysis, molar conductance, FT-IR, UV-vis spectra and magnetic moment. The obtained chemical analysis data showed the formation of 1:1 (metal: ligand) ratio. The square planar and tetrahedral g...
متن کاملNanoscale Motion Control With a Compact Minimum-Actuator Magnetic Levitator
This paper presents a novel magnetically levitated (maglev) stage developed to meet the ever-increasing precise positioning requirements in nanotechnology. This magnetic levitator has 6 independent linear actuators necessary and sufficient to generate all 6-degree-of-freedom (6-DOF) motions. This minimum-actuator design concept led to a compact, 200 g lightweight moving part and the power consu...
متن کامل